See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/252647552
Three-dimensional shape and position of Venus's bow shock

Article in Cosmic Research • January 1981

Citations
4

6 authors, including:
Oleg L. Vaisberg
Space Research Institute
372 PUBLICATIONS 4,123 CITATIONS
SEE PROFILE

READS
48

James A. Slavin
University of Michigan
801 PUBLICATIONS 26,809 CITATIONS
SEE PROFILE

ACADEMY OF SCIEATCES OP THE USSR SPACE RESEARCH INSTITUTE

In-656
V.E.Smirnov, O.L.Vaisberg, S.A.Romanov, J.A.Slavin, C.T.Russel, D.S.Intriligator

THREE-DTMESSIONAL SHAPE AND POSITION OF VENUS'S BOW SHOCK

ABSTRACT

The results of determination of the shock front position near Venus according to the Venera-9, 10 and Pioneer-Venus data are compared. It is shown that, the presence of an asymmetry of the three-dimensional form of the shock wave and its position in the ecliptic plane makes possible the explanation of the recently obtained discrepancy in determining the front position based on the data from the Venera and Pioneer-Venus data. Both the identified asymmetry of the shock wave form and the rotation of its axis of symmetry in the ecliptic plane additionally at an angle of 7.5° are probably associated with the interplanetary magnetic field influence.
(6) Ипститут восмичесих исследований (ИКА АН СССР), 198I

The position and tae shape oi bow gacis near Yenus have been recentig considered in [1-7] using the measurements of plasme end magnetic field made on-board the Venera-9 and -10 sateliftes and the Pioneer-Tenus Orbiter. I它 bas been noted in [4-6] that the shock front near Venus based on the PioneerVenus data obtained during 1978-1979 is at a sfgnificantly larger distence from the planet than that determined from the data of the Venera-9, - 10 measuremenis obtained during 1975 1976. According to the Venera-9, -10 data the distance at the subsolar point of the shock was estimated as equel to 1.27 radii of Venus, $R_{V}[6]$, and from the Pioneer-Venus data it was estimated as $1.37 \mathrm{R}_{\mathrm{V}}[5]$ and $1.47 \mathrm{R}_{V}[7]$.

Two explanations were suggested for the established discrepancy in the shock position. One of them is based on the result of [1] where an anisotropy of the shock near Venus was revealed assuciated with the interplanetary magnetic field orientation. The analysis of the Venera-9, 10 shock crossings, in a frame of reference with the transversal component of the interplanetary magnetic field (IMF) as one of the axes showed that in the direction perpendisular to this INP component the Venusien shock is by $2,200 \mathrm{~km}$ ffarther from the planet near its terminator then in the direction along the transversal component of TMF [1]. This result was obtained using 17 crossings of shock for which the TMF orientation was known.

The Ploneer-Venus orbiter crosses the shock front at high planetocentric latitiles, whereas-the Venera-9. - 10 orbits cross the shock front at lower latitudes. Since most frequently the IMF vector lies close to the ecliptic plane the front asymmetry resulting from the IMF orientation should lead to the more distant. on an average, position of the shock at high planetocentric latitudes.

Examining a much greater amount of experimental data Slavin et al., $[3,4]$ did not find a dependence of the shock position on the IMF orientation. It should be noted that the IMF variations increase while satellite approaches the shock wave that creates difficulties in determining. the TMF orientation.

Slavin et al., $[3-5]$ suggested an alternative explanation of the differences.in the determined positions of the shock according to the Venera-9, -10 and Pioneer-Venus data, namely that they are associated with variations of the Sun ultraw violent radiation during ll-jear cycle of solar activity and its influence on the properties of the obstacle to the solar wind flow. This explanation, however, meets with ceritain dif ficulties since the observations of the ionospheric enaracteristics near the ionization maximum and eapecially of the iono* pause height in the periods when the Soviet and Ameriean satellites performed ter measurements do not reveal ans signific cent changes in the state of the ionosphere $[8-10]$.

The Pioneer-Venus crossings of the shock Iront near Venus were analyzed. Within solarazenith angles from 60° to 120° [5] and 45° to $135^{\circ}[7]$ 。 172 erossings were used io [5] and ever noze [n [T]. 62 erosajags were identified in the Veaera-9, - 10 date in $[6]$ but wibhin a wider range of solax-qeadith agges
(from 25° to 150°).
Assuming that the difference in determining the position of the shock (according to the data of two satellites) is assom ciated with its spatial position but not with the long-periodic time variations, the form of the shock front appropriate to its equatorial and polar cross-sections was obtained in [6] using combinations of the Venera-9, -10 and Pioneer-Venus crossings. The shock front form thus obtained, on the one hend, does not - contradict to the presence of the asimuthal asymmetry, on an average, and on the other hand does not agree with the conclusions of [5] about the absence of the front position dependence on the TMF orientetion.

In this paper we try to make a further analysis and a comparison of the Venera-9, -10 and PVO data on the shock position near Venus in order to find out the causes of the existing discrepancies and to determine more sccurately the position and the shape of the shock.

Fig. 1 shows the shock front crossings, 172 PVO shock crossings [5] and 54 Venera-9, -10 crossings [6]. The distance to the shock front in the terminator plane amounts to 14.4 and 12.8 thousand km based on the PVO and Venera-9,-10 data, respectively, i.e. the mean Verera-9, -10 shock location is closer to the planet by 11% compared to PVO one. The difference between Venera-9,-10 and PVO shocks reported by $[4,5]$ is related to the fact that the comparison was made with Venera-s, -10 shock crossings from [2] where no solar wind aberration was not. taken into account.

Pigure 2 gives the shock front crossings (PVO and Venera-9 and -10 data) being only on the morning side of the planet that corresponds to PVO covered SZA range. It can be seen first, that compared with Fig. 1 the
difference in the position of two sets of points decreased significantly and, sfiond, the curve describing the mean PVO shock is somewhat higher than the PVO morning crossings. In order to analyze the terminator cross-section of the shock in more details all 172 PVO crossings of the shock were projected to the terminator plane along the best fit curve given in [5] \therefore (curve 3, Table 1), and Venera-9, - 10 crossings were projected along best fit curve given by [6] (curve 2, Table 1). In the latter case only those ciossings were used which are within the same range of zenith angles as PVO crossings. Pig. 3 presents the so obtalned shock projections in the terminator plane. It can be seen from Fig. 3 that while the Venerc-9, 10 shock crossings on the dawn $\left(Y_{S E}<0\right)$ are aignificantly closer to the planet". . center than the PVO ones on the dusk they are located approximately at the same planetocentric distances. The distribution of poinf β in the aberrated terminator plane in the $X^{\prime} Z^{\prime}$ coordinate system suggests that the shock surface is rotated around 2'-axis at some additional angle and the center of the surface trace describing the shock front is shifted in the terminator plane along the positive direction of Y^{\prime}-axis. PVO and Venera--9, -10 shock crossings projected onto the terminator. plane were approximated by a least-square fit circle. The radius of this cirle is equal to $R=14.51 \pm 1.24$ thousand $k m$ and its center is displaced from the origin of coordinate system by 1.98 thousand km towards $+\mathrm{Y}_{\mathrm{i}}$ - exis (this circle is shown en Fig. 4 by the dotted line). The approximation of the PVO crossings alone by a circle leads to the similar result: $R=14.52 \pm 1.27$ thousand km and the displacement is 1.40 thousand km .

As a neft step the shock crossings of Venera-9, -10 and the ones of PVO were approximated separately by the conic sections
with their focuses in the planet center and symetry axes rotated relative to the polar axis at φ_{0}-angles.

$$
\begin{equation*}
r=\frac{\rho}{1+\varepsilon \cos \left(\varphi-\varphi_{0}\right)} \tag{1}
\end{equation*}
$$

Here, the sign of P-angle was taken positive for the corssings at the apper side ($Y_{s e}^{\prime}>0$). Three-dimensional coordinates of the shock crossings were used. Table 1 gives parameters of the obtained curres.

It is seen from this Table thet the dusk-dawn asymmetry is recognized in the Pioneer-Venus data as well as in the Venera-9,-10 data, being more apparent in the latter case. This should be expected for the crossings lying near the ecliptic plane if the shock surface is rotated around Z'-axis by some angle additional to the aberration one. Thus both eete of data confirm the presence of the dawn-dusk asymmetry of the shock.

To describe the shape of the shock front more accurately, satisfying the two sets of data representing near-equatorial (Venera-9,-10) and meridional (Pioneer-Venus) cross-sections of shock, tho best fit second order surface was calculated. The surface equation was taken symmetrical relative to the ecliptic plane.

$$
\begin{equation*}
a_{11} x^{2}+a_{22} y^{2}+a_{33^{z^{2}}}+a_{12} x y+a_{14} x+a_{24} y+a_{44}=0 \tag{2}
\end{equation*}
$$

where X, Y, Z are the coordinates of the shock front surface $\left(R_{\nabla}\right)$ in the solar-ecliptic coordinate system rotated by the solar wind aberration angle.

Approximating surface was found by the minimization of the sum of squared distances of crossings to the surface along the normals to it. The distance from a point to the surface
was calculated by the iteration method. Table 2 gives the surface coefficients (2) obtained. from 226 shock crossings. The coefficient a_{22} in Eq. (2) was taken equal to 1.

Table 3 presents the crossings of the so found surface with the axes of the coordinate system as well as some parameters of this surface: $\varepsilon_{x z}$ and $\varepsilon_{y z}$ are the eccentricities of the cross-sections in the plane $X^{\prime} Z^{\prime}$ and $Y^{\prime} Z^{\prime}$ respectively' φ is the angle between the symmetry axis of the surface and $X^{\prime}-a x i s ; \dot{A}_{Z}$ and B_{y} are the ellipsoid semi-axes in the $Y^{\prime} Z^{\prime}$ plane.

The solid line in Fig. 3 shows the cross-section of the determined surface by the Y'Z' plane. It can be seen that it describes both the Venera-9, -10 points and the PVO points projected onto the terminator plane rather well.

Fig. 4 illustrates the cross-section of this surface by the XIY plane together with the projected onto this plane tas Venera-9, -10 shock crossings for which $z \leq 5$ thousand km. Also given are the shock crossings of earlier Venera-4 and Venera-6 missions [11, 12]. The subsolar point distance, X_{q}^{\prime}, and the distance at dawn terminator, Y agree well with the values obtained in [6] for a second-order symmetric 2D-curve. The distance at the dusk terminator ($Y_{+}^{:}$), however, exceeds by aboint $2,000 \mathrm{~km}$ that at the morning terminator, being close to the value at the terminator in the $X^{\prime} Z^{\prime}$ plane. It can also be seen that Venera-4 and Venera-6 shock crossings [14,12$]$ are in reasonable agreement with both the average curve and indi-『idual shock crossings of Venera-9 and 10.

Fig. 5 shows the cross-section of the shock surface in the $X^{\prime} Z^{\prime}$ plane together with the PVO shock crossings projected
into the plane by rotation about the X^{9}-axis. The distance to the shock front at the terminator in the $X{ }^{\prime \prime}$ plane, equal to $14,380 \mathrm{~km}(2.38 \mathrm{R} \mathrm{V})$, is very close to the value obtained in [5] where PVO crossings were approximated by a conic section.

The histogrem of deviations from observed shock crossing to the model surface along the normals to the latter is given in Fig.6. Interesting is the fact that the r.m.s. deviation, which is $0.16 \mathrm{R}_{\mathrm{V}}(960 \mathrm{~km})$, in the 3-dimensional case is. alightly less then the value $0.17 \mathrm{R}_{\mathrm{v}}[5]$ obtained for the $2-\mathrm{D}$ conic section.

Thus the derived three-dimensional shock model can explain đivergencies and contradictions between earlier estimations of the location and shape of the shock front, revealed from Pio-neer-Venus Orbiter and Venera-9, -10 data. The explanation is the asymmetric shape of the shock front, rotated by about 7° in the ecliptic plane, in addition to the aberration angle. Relatively small number of the shock crossings on the dusk side determined from Venera-9, -10 data recorded in low temporal resolution telemetry mode may cast some doubts on the accuracy of the obtained deflection angle. Yet the analysis of dawndusk pairs of the shock crossings occured on the same sattelite orbit behind the planet confirms the obtained result (these pairs are marked in Fig.4). Time intervals between two crossings of the shock were about $1^{\mathrm{h}} 15^{\mathrm{m}}$. It is seen that these individual crcssings agree reasonably both with all other crossings and the average curve.

Using the value of rms-deviation and geometrical considerations we evaluate an error of the rotation angle determination as $\pm 1^{\circ}$. So the asymaetry of the shock and its value seem to be reliably established.

As was first shown by Walters [13] Prom the analysis of an oblique MHD shock the existence of the interplanetary magnotic field should lead to an additional deflection of the solar wind flow on the shock front and, as a consequence, to a rotation of its symmetry axis relative to the direction of the solar wind flow. He found that for the subsolar point of the terrestrial shock the flow deflection angle should be about 7.5。. There have been indications that this effect does exist but no unambiguous confirmation of it hes been found get [Ih, 16].

Following Walters' idea we may estimate this effect using the expression for the deflection angle on the perpendiculer MHD shock [16]:

$$
\begin{equation*}
\operatorname{tg} \alpha=\frac{\rho_{0} / \alpha_{0}\left(\rho_{1} / \rho_{0}-1\right) \operatorname{tg} \psi_{0}}{M_{A}^{2}\left(1+\operatorname{tg} q_{0}\right)+\alpha_{1} / /_{0}}, \tag{3}
\end{equation*}
$$

where β_{1} / ρ_{c}. is the density jump on the shock front, M_{A} is the Alfven Mach number, Fo $_{0}$ is the angle between the normal to the shock front and the magnetic fiepd vector.

Assuming $\mathcal{S}_{1} / \rho_{0}=4.0$ and the conditions for Venus' orbit $[5]: M_{A}=7.2$ and $\quad Y_{v}=-35^{\circ}$ we get from (3) the argle $\alpha=-6^{\circ}$ in the subsolar point which is close to the obtained value.

An attempt was made to check the relation (3) for individual pairs of shock crossings. To do this, peirs of shock crossIngs recorded during one Venera-10 pass near the planet (Fig. 7) have been sompared with calculated positions of a shock wave rotated in the ecliptic through an angle determined by the relation (3). As is seen from Fig.7, observations agree satisfactorily with the theoretical predictions.

The Venera-9 and -10 data demonstrated shock front position dependence on the angle between the normal to the front and the TMF direction [1Z]. This result was interpreted in [20] as a shock anisotropy, caused by different velocities of MHD wave propagation. The effect we discuss here should lead to a similar result. Fig. 8 illustrates dependence of the shock distance at the terminator on the angle between the normal to the front and the TMF direction, based on the data of [19]. We mast mention that the average IMF direction is determined in [17] for a $45^{\text {s }}$ interval, including a shock structure. Fig. 9 distinctly shows the IMF effect on the shock front location.

The shape of the shock thus obtained is slightly asymmetric in the terminator section (see Table 3), with a ratio of semiarmes in the Z^{\prime} and Y'-directions of 1.05 and their difference equal to 650 km ; this asymmetry is by a factor of 3 less than the value obtained earlier [1, 18]. The key effect is the dawn-dusk asymmetry of about $2,000 \mathrm{~km}$ in planetocentric distances.

The results of this paper have some similarities with the recent paper of Pormisano [18] who investigated the three-dimensional model of the near-Earth shock and the dependence of its position and shape on the solar-wind conditions, in particular on the RaF orientation and the Alfven Mach number, M_{A}. It was shown in [18] that the symmetry axis of the near-Earth shock, the position and shepe of which was determined, from the shock crossings normelized to the dynamic pressure of the solar wind, deviates, on the average, by 8.9° from the sunward direction. As the aberration angle due to the Earth's crbital motion is about 4°, the additional rotation angle due to IMF existence is about 5°. According to [18] this result agrees both with
the theoretical predictions (Eq.3) and with the eariier experimental results of Hundhausen et al. [14] who stuaied the pattern of the plasma flow in the transition region near the Barth. Comparison of the results of this paper with those obtained in [18] for the near-Earth shock emphesizes the following circumstance. Contrary to the Venusian shock, in the case of the near-Earth shock the effect associated with the dawndusk asymmetry is revealed only for crossings normalized to the dynamic pressure of the solar wind. This is possinly due to the different nature of obstaclea'near the two planets. According to $[5,7]$ the near-Venus shock position and its veri-' ations correlate but weakly with the dynamic pressure of the solar wind and with ionopause height variations, unlike the near-Earth shock and magnetosphere [19]. It appears that the shock near Venus is automatically 'normalized' to the dynamic pressure of the solar wind.

Thus; due to the INF effect, the near-Venus shock is nonsymmetric relative to the direction of solar wind flow, and its axis is additionally rotated by about 7°, on the average, in the direction of solar wind aberration. The analgsis of the position of the shock front as a function of the angle between the normal to the front and the IMF vector shows that the effect is indeed observed not only as an average one but also for individual crossings of the shock.

Since this effect follows from the conditions of flow velocity refraction at the $\mathbb{M H D}$ shock front we may also expect an asymmetry in a pattern of the plasma flow around the planet and possibly in the shape of the abstacle forming in the plasma flow aruund the ionosphere of Venus.

Table 1

$\begin{array}{llccccc}\text { Pioneer-Venus } & 172 & 14.30 \\ \text { crossings } & \left(2.37 R_{v}\right) & 0.69 & -2.70 & 8.47 & 14.80 & 13.8 \\ \left(1.4 R_{v}\right) & \left(2.45 R_{v}\right) & \left(2.29 R_{v}\right)\end{array}$
\qquad

Table 2
\qquad

a_{22}	a_{11}	a_{33}	α_{12}	a_{14}	a_{24}	a_{44}
1.0	0.190	0.912	0.214	3.82	0.329	5.156

\qquad
mable 3

$$
\begin{array}{rlll}
7.68 & 14.77 & -12.78 & 14.38-74^{\circ} 0.890 .3014 .4213 .7 i_{i} \\
\left(1.27 R_{\nabla}\right)\left(2.44 R_{\nabla}\right) & \left(2.11 R_{v}\right)\left(2.38 R_{V}\right) & \left(2.38 R_{v}\right)
\end{array}
$$

Figute Captions

Pig. 1 Crossings of the shock front according to the PioneerVenus (crosses) and Venera-9, -10 (circles) data in the solar ecliptic system of coordinates. The average position of the shock obtained in [5] from the PVO crossings is also shown.

Here and in the following Figures all the crossings are allowed for solar wind aberration.

Fig. 2 The same as in Fig. 1 but boly the crossings are given for which $Y^{\prime}<0: I$ - the curve obtained in [5] and describing the average of PVO crossings distribution; II - the gurve describing the average of Venera-9,-10 crossings distribution $[\bar{b}]$.

Fig. 3 Crossings of the shock according to the PVO and Ve-nera- 9, -10 data projected onto the terminator plane, Y'2', (see text). The dotted line is an approximation
 circle with the center shifted along the positive direction of Y^{\prime}-axis. The solid line is the trace of the obtained three-dimensional surface of "the shock onto the terminator plan (see text).

Fig. 4 Crossing of the surface describing the shock front with the ecliptic plane, X'Y'. The Venera-9, -10 shock crossings at $2^{\prime}<5$ thousand km were projected onto the $X^{\prime} Y^{\prime}$ plane by rotation around X'-axis. Each pair of crossings with numbers 1-3 were obtained during one: pass of the Venera-10 satellite. B4 and B6 show the shor crossings of the $V \in n e r a-4,-6$ probes.

Fig. 5 Crossing of the three-dimensional shock surface with the plane X'Z'. The PVO shock crossings (crosses) are shown projected onto the X'Z' plane by rotation around I'-axis.

Pig. 6 Histogram of the distribution of the deviations, d_{n}, of the shock crossings from the average shock surface, along the normals to it. The mean value of the deviation $d_{n}=0.12 R_{v}$: the mean-square value $d_{n}=$ $=0.16 . R_{\nabla}$

Fig. 7 Dependence of the planetocentric distance of the model shock at the dawn and dusk terminator on the IAF orientation. Circles denote the distances of the shock front for one pass of the Venera-10 satellite, open circles - dawn crossings, filled circles - dusk terminator.

Pig. 8 Dependence of the planetocentric distance of the shock front (Venera-9, -10 data) on the angle between the magnetic field and the normal to the front, Ψ..

References

1. Romanov S.A. Assymmetry of the region of the solar wind interaction region with Venus according to the data of Venera-9 and Venera-10. - Kosmich. Issled., 1978, v. 16, No. 2, p. 318 (in Riussian).
2. Verigin M.I., Gringauz.K.I., Gombosi T., Breus T.K., Bezrukikh V.V., Remizov A.P., and Volkov G.I. Plasma near Venus from the Venera-9 and -10 wide-angle analyzer data. J. Geophys. Res., 1978, v. 83, p:’ 3721.
3. Slavin J.A., Elphic R.C., Russel C.T., Wolfe J.H., Intri1ligator D.S. Position and shape of the Venus Bow Shock: Pioneer Venus observations. - Geophys. Res. Lett. 1979, マ. 6, No. 11, A901.
4. Slavin J.A., Eiphic R.C., Russel C.T. A comparison of Pioneer Venus and Venera Bow Shock Observations: Evidence for
 No. 11, p. 905.
5. Slavin J.A., Elphic R.C., Russel C.T., Scarf F.L., Wolfe J.H., Mihalov J.D., Intriligator D.S., Brace L.H., Teglor H.A., Jr., Daniell R.E., Jr. Solar Wind Interaction with Venus: Pioneer Venus Observations of Bow Shock Location and Structure. - J. Geophys. Res., 1980, v. 85, A13, p.7625.
6. Smirnov V.N., Vaisberg O.L., Intriligator D.S. An Empirical Model of the Venusian outer Environment 2. The shape and Location of the Bow Shock. - J. Geophys. Res., 1980, V. 85, A13, p. 7651.
7. Theis R.F., Brace L.H., Shatten K.H., Russel C.T., Wolfe J.A. The Venus Ionosphere as an obstacle to the solar wind

Beport Symposium on Physics of Planetary Kagnetospheres, Budapest, Hungary, 1980.
8. Ivanov-Kholodny G.S., Kolosov M.A. Sovich N.A., Alexandrov Yu.N., Vasilyev M.B., Vyshlov A.S., Dubinin V.M., Zaitser A.I., Michailov A.V., Petrov G.M., Semovol Y.K., Samoznaey L.N., Sidorenko A.I., and Hesyanov E.F. Daytime ionosphere of Venus as studied by Venera-9 and Venera-10 dual-frequence ratio occultation experiments. - Icarus, 1979, $\nabla .39$ N2, p. 209.
9. Kliore A.J., Woo R., Ermetrong J.T., Patel I.R., Croft T.A. The polar ionoaphere of Venus near the terminator from eariy Pioneer Venus orbiter radio occultations. - Science, 1979, จ. 203, p. 765.
10. Vaisberg O.I., Intriligator D.A., Smirnov V. \mathbb{N}. An Empirical Model of the Venusian Outer Environment. 1. The shape of the Dayside solar Wind-Atmosphere Interface. - J. Geophys. Res., 1980, ∇. 85, A13, p. 76-42.
11. Gringauz K.I., Bezrukikh V.V., Volkov G.I., Musatov L.S., Breus T.K. Interplanetary Plasma Disturbances near Venus determined from Venera-4 and Venera-6 data. - Kosmich. Issled., 1970, $\nabla .8$, N 3, p. 431. (In Russian).
12. Dolginov Sh.Sh., Yeroshenko Ye.G., Zhuzgov L.N. Magnetic field investigation with spacecraft Venera-4. Kosmich. Issled., 1968, $\quad .6, N 4$, p. 561 (In Russian).
13. Walters G.K. Effect of oblique interplanetary magnetic field on the shape and behaviour of the magnetosphere. - J. Geophys. Res., 69, 1964, $\vee .69$, N 9 , p. 1769.
14. Hundhausen A.J., Bame S.J., Asbridge J.R. Plasma Flow pattern in the Earth's magnetosheath. - J. Geophys. Res.,1969, V. 74 , $\mathbb{1 1 1 , ~ p . ~} 2799$.
15. Cuminge ${ }^{\text {V.D. D. Coleman P.J., Jr., Siscoe G.I. Quiet Day }}$ Hegnetic Field at ATS-1, J. Geophys. Res., 1971, v. 76, No. 4, p. 926.
16. Smit G.R. Bow Shock parameters in different flow normalizatione, Preprint SN-17, ESRO, 1967.
17. Romanov S.A. The influence of the interplanetary magnetic field on the bow shock near Venus, Preprint D-297, Space Kes. Inst., Moscow, 1980.
18. Formisano V. Urientation and shepe of the Earth's bow shock in three dimensions. - Planet. and Space Sci., 1979, v. 27, 9 , p. 1151.
19. Pairlield D.H. Average and unusual location of the Earth's magne topause and bow shoct. - J. Geophys. Res., 1971, V. 76, N 28 , p. 6700.

Rig. 1

Tig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig.

TIS. 8

